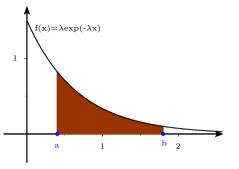
Loi exponentielle

Définition 1.

Une variable aléatoire continue T suit une loi exponentielle de paramètre le réel $\lambda > 0$ si sa densité de probabilité est la fonction fdéfinie sur $[0; +\infty[$ par :

$$f(x) = \lambda e^{-\lambda x}$$



Propriété 1.

Dans ce cas, on a pour t > 0:

$$p(T \le t) = \int_0^t \lambda e^{-\lambda x} dx = \left[-e^{-\lambda x} \right]_0^t = 1 - e^{-\lambda t}$$
$$p(T > t) = e^{-\lambda t}$$

Définition 2.

La durée de vie d'un appareil est dite « sans vieillissement » lorsque la probabilité qu'il fonctionne encore pendant une durée h (au moins) ne dépend que de h et pas de la durée de vie passée. $p_{(T \ge t)}(T \ge t + h) = p(T \ge h)$

Remarque (ROC) ★

Si
$$T$$
 suit la loi exponentielle de paramètre λ alors, pour tout $t\geqslant 0$ et $h\geqslant 0$, on a :
$$p_{(T\geqslant t)}(T\geqslant t+h)=\frac{p\left((T\geqslant t+h)\cap (T\geqslant t)\right)}{p(T\geqslant t)}=\frac{p(T\geqslant t+h)}{p(T\geqslant t)}=\frac{e^{-\lambda(t+h)}}{e^{-\lambda t}}=e^{-\lambda h}.$$

Donc: $p_{(T \geqslant t)}(T \geqslant t + h) = p(T \geqslant h)$.

Remarque: Cette propriété porte le nom de "durée de vie sans vieillissement" car elle montre que la durée de vie sur une période h ne dépend pas de l'âge t à partir duquel on considère cet événement.

Espérance mathématique : Soit X une variable aléatoire qui suit une loi exponentielle de densité f. On définit l'espérance mathématique de X par :

$$E(X) = \lim_{t \to +\infty} \int_0^t x f(x) dx$$

Propriété 2.

Soit X une variable aléatoire qui suit une loi exponentielle de paramètre $\lambda > 0$.

Alors :
$$E(X) = \frac{1}{\lambda}$$