FONCTIONS DE RÉFÉRENCE

1. Fonction $x \mapsto x^2$

(a) **Rappels**: La fonction carré est la fonction définie sur \mathbb{R} par $f(x) = x^2$ Variations (démonstration exigible, faite en exercice)

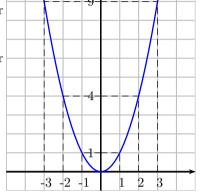
Si a < b < 0 alors $a^2 > b^2$.

La fonction est strictement décroissante sur l'intervalle] - ∞ ; 0 [.

Si 0 < a < b alors $a^2 < b^2$

La fonction est strictement croissante sur l'intervalle] $0: +\infty$ [.

x	$-\infty$	0	$+\infty$
$x \mapsto x^2$	$+\infty$		+∞



La courbe représentative de la fonction $x \mapsto x^2$ est une **parabole** dirigée vers le haut.

(b) Compléments:

Définition 1.

Une fonction f est dite **paire** si :

- pour tout réel x de son ensemble de définition D alors (-x) appartient aussi à D,
- et, pour tout x de D, alors f(x) = f(-x).

Conséquence : La fonction carré est paire, ce qui justifie que dans un repère orthogonal, l'axe des ordonnées est axe de symétrie de la courbe représentative de la fonction carré.

- (c) Application des propriétés :
 - i. Sans calculatrice et sans calculer les nombres donnés, ranger ces nombres par ordre croissant :

 $\left(\frac{1}{3}\right)^2$, $\left(\frac{2}{15}\right)^2$, $\left(\frac{2}{3}\right)^2$, $\left(\frac{3}{5}\right)^2$, $\left(\frac{1}{5}\right)^2$ puis, $\left(-\frac{1}{4}\right)^2$, $\left(-\frac{1}{10}\right)^2$, $\left(-\frac{2}{3}\right)^2$, $\left(-\frac{1}{2}\right)^2$

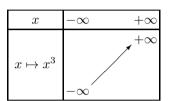
- ii. Déterminer graphiquement le meilleur encadrement de x^2 quand $-3 \leqslant x \leqslant 2$
- iii. Résoudre dans \mathbb{R} $x^2 = 10$ puis $(x+5)^2 = 9$.
- iv. Résoudre dans $\mathbb R$ l'inéquation $3\leqslant x^2\leqslant 4,$ puis vérifier graphiquement la réponse.

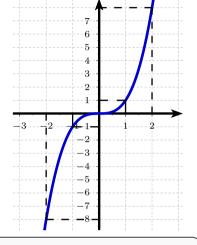
2. Fonction $x \mapsto x^3$

La fonction cube est la fonction définie sur \mathbb{R} par $f(x) = x^3$.

(a) Variations:

Si a < b alors $a^3 < b^3$ La fonction est strictement croissante sur \mathbb{R} Réciproquement Si $a^3 < b^3$ alors a < b





(b) Compléments:

Définition 2.

Définition : Une fonction f est dite **impaire** si :

- pour tout réel x de son ensemble de définition D alors (-x) appartient aussi à D,
- et, pour tout x de D, alors f(-x) = -f(x).

Conséquence : La fonction cube est **impaire**, ce qui justifie que dans le plan muni d'un repère d'origine O, O est centre de symétrie de la courbe représentative de la fonction cube.

Propriété 1.

Pour tout nombre réel a:

- Si 0 < a < 1 alors : $0 < a^3 < a^2 < a < 1$.
- Si a > 1 alors $1 < a < a^2 < a^3$.
- (c) Application des propriétés :
 - i. Sans calculatrice et sans calculer les nombres donnés, ranger ces nombres par ordre croissant : $\left(\frac{3}{4}\right)^3$, $\left(-\frac{3}{5}\right)^3$, 2^3 , $\left(\frac{5}{3}\right)^3$, $\left(-\frac{3}{4}\right)^3$.
 - ii. Calculer $\left(\frac{2}{3}\right)^3$, puis déterminer l'ensemble des x tels que :

$$x^3 = \frac{8}{27}$$
, puis $x^3 \geqslant \frac{8}{27}$ et enfin $\frac{8}{27} \leqslant x < 1$

3. Fonction $x \mapsto \frac{1}{x}$

(a) **Rappels**: La fonction inverse est la fonction définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$

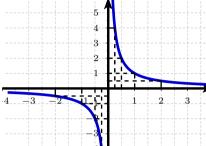
Variations (démonstration exigible, faite en exercice)

Pour tout nombre a et b, non nuls et de même signe

$$a < b$$
 équivaut à $\frac{1}{a} > \frac{1}{b}$.

La fonction inverse est décroissante sur \mathbb{R}^{-*} et sur \mathbb{R}^{+*} .

x	$-\infty$ () +∞
$x \mapsto \frac{1}{x}$	0 / ∞	$+\infty$ 0



La courbe représentative de la fonction $x \mapsto \frac{1}{x}$ est une **hyperbole**.

- (b) Compléments : La fonction inverse est **impaire**, et donc, dans le plan muni d'un repère d'origine $O,\ O$ est centre de symétrie de la courbe représentative de la fonction inverse.
- (c) Application des propriétés :
 - i. Sans calculatrice et sans calculer les nombres donnés, ranger ces nombres : $\frac{1}{15}$, $\frac{1}{3}$, $\frac{1}{10}$, $\frac{1}{2}$.
 - ii. Résoudre dans \mathbb{R}^* l'équation $\frac{1}{x} = 3$.
 - iii. Résoudre dans \mathbb{R}^* l'inéquation $\frac{1}{x} < 7$, puis vérifier graphiquement la réponse,
 - iv. Mêmes questions avec l'inéquation $3 \le \frac{1}{x} < 7$.
- (d) Exercice:

On considère l'algorithme ci-contre, où a est un nombre réel strictement positif.

i. Exécuter cet algorithme pas à pas avec a=0,1 et compléter le tableau suivant :

et completer le tableau suivant :									
X	1	2							
У	1								

Quelle est la valeur de x à la fin de l'algorithme?

- ii. Expliquer le rôle de cet algorithme.
- iii. Coder cet algorithme en python et le tester avec différentes valeurs de a.