Propriété 8.

Soit \vec{u} un vecteur de coordonnées $\begin{pmatrix} x \\ y \end{pmatrix}$ dans une base (\vec{i}, \vec{j}) , alors $\vec{u} = x\vec{i} + y\vec{j}$.

C'est pourquoi la base $(\overrightarrow{i}, \overrightarrow{j})$ suffit donc pour donner les coordonnées d'un vecteur.

Propriété 9.

Pour tous vecteurs \vec{u} et \vec{v} et et tous réels k et k', on a :

- $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$.
- $(k + k')\vec{u} = k\vec{u} + k'\vec{u}$.
- $k(k'\overrightarrow{u}) = (kk')\overrightarrow{u}$.

Ces propriétés se montrent facilement avec les coordonnées et résultent des propriétés sur les nombres réels.

Définition 4.

On dit que deux vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement si il existe un réel k tel que $\vec{u} = k\vec{v}$ ou $\vec{v} = k\vec{u}$.

Remarque

Le vecteur nul est colinéaire à tout vecteur \vec{u} .

```
Propriété 10.
```

Soit
$$\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs.
Dire que $xy' - x'y = 0$ équivaut à dire que
$$\begin{cases} \text{il existe un réel k tel que } \overrightarrow{v} = k \overrightarrow{u} \\ OU \\ \overrightarrow{u} = \overrightarrow{0} \end{cases}$$

Définition 5.

La différence des produits x.y'-x'.y est appelée déterminant des vecteurs \overrightarrow{u} et \overrightarrow{v} . On le note dét $(\overrightarrow{u}$, \overrightarrow{v}). Il faut savoir que : dét $(\overrightarrow{u}$, $\overrightarrow{v}) = \begin{vmatrix} x & y \\ x' & y' \end{vmatrix} = xy' - x'y$

Propriété 11.

Conséquence: Deux vecteurs sont colinéaires si et seulement leur déterminant est nul.

Pour vérifier que deux vecteurs non nuls $\overrightarrow{u}\begin{pmatrix} x\\y \end{pmatrix}$ et $\overrightarrow{v}\begin{pmatrix} x'\\y' \end{pmatrix}$ sont colinéaires, il suffit de : possibilité 1 trouver un réel k non nul tel que x'=kx et y'=ky; possibilité 2 vérifier que le déterminant , xy'-x'y est nul.

Soit (O; I, J) un repère orthogonal. Les vecteurs suivants sont-ils colinéaires? $\overrightarrow{u} \begin{pmatrix} 2 \\ 6 \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} -6 \\ -18 \end{pmatrix}$.

Soit (O; I, J) un repère orthogonal. Les vecteurs suivants sont-ils colinéaires?

$$\overrightarrow{u}$$
 $\begin{pmatrix} 2 \\ 6 \end{pmatrix}$ et \overrightarrow{v} $\begin{pmatrix} -6 \\ -18 \end{pmatrix}$. $-6 = -3 \times 2$ et $-18 = -3 \times 6$ donc $\overrightarrow{v} = -3\overrightarrow{u}$.

 \vec{u} et \vec{v} sont donc colinéaires.

ou

dét
$$(\overrightarrow{u}$$
, $\overrightarrow{v}) = \left| \begin{smallmatrix} 2 & -6 \\ 6 & -18 \end{smallmatrix} \right| = 2 \times (-18) - 6 \times (-6) = 0$, donc les vecteurs \overrightarrow{u} et \overrightarrow{v} sont donc colinéaires.

Soit (O; I, J) un repère orthogonal. Les vecteurs suivants sont-ils colinéaires? $\overrightarrow{w} \begin{pmatrix} -5 \\ 3 \end{pmatrix}$ et $\overrightarrow{z} \begin{pmatrix} 12 \\ -7 \end{pmatrix}$.

Soit (O;I,J) un repère orthogonal. Les vecteurs suivants sont-ils colinéaires? $\overrightarrow{w}\begin{pmatrix} -5\\ 3 \end{pmatrix}$ et $\overrightarrow{z}\begin{pmatrix} 12\\ -7 \end{pmatrix}$. dét $(\overrightarrow{w},\overrightarrow{z})=\left| \begin{smallmatrix} -5\\ 3 \end{smallmatrix} \right|^{-5}=0$. Donc \overrightarrow{w} et \overrightarrow{z} ne sont pas colinéaires.

Propriété 12.

- Deux droites (AB) et (CD) sont parallèles si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires;
- Trois points A, B et C sont alignés si et seulement si les vecteurs AB et AC sont colinéaires.